SOFTWARE

SUSTAINABILITY
$2 RESEARCH GROUP

Design and Development
of Green Software

Vincenzo Stoico @

PostDoctoral Researcher

v.stoico@vu.nl

69 Introduction

Growth of ICT devices and services

~—

Impact on People's Lives Energy Demand

Belkhir et al. estimate that ICT devices will produce 14% of
global CO2 emissions by 2040 [1]

[1] Belkhir, L., Elmeligi, A.: Assessing ICT global emissions footprint: Trends to 2046 & recommendations, Journal of ‘Ullj wUE
Cleaner Production, 2018 m

AMSTERDAM
IMG: https://anacurbelol.com/PG-I1lustrations

https://anacurbelol.com/PG-Illustrations

69 Introduction

2.__L

HW power consumption savings
(Frog)

Poor design decisions af the SW
level (Scorpion)

“Software-related CO2 emissions account for 4-5% of
global emissions. This is equivalent to the emissions of all
aviation, shipping, and rail combined” [2]

Techniques to reduce SW energy
consumption are crucial fo achieve Net
Lero Goals

[2] Green Software Foundation, 2023 State of Green Software,

IMG: https: ZZanacurbelol com(PG Tllustrations

https://www.cell.com/patterns/pdfExtended/S2666-3899(21)00188-4
https://www.cell.com/patterns/pdfExtended/S2666-3899(21)00188-4
https://stateof.greensoftware.foundation/insights/software-emissions-are-equivalent-to-air-rail-shipping-combined/
https://anacurbelol.com/PG-Illustrations

é’ An holistic view of soffware energy consumption

e Optimizing overallenergy A
consumption is complex

e SOA offers domain-specific energy . e
° 72
models/techniques, none of them P
provides the overall picture '

e |dentify energy hotspots @ 1 pia)

ac=n%

e Exploit Modeling and Simulation

Inductive approach: we collect 7
empirical evidence that we analyze

VRIJE
Y. Li et al., “End-to-end energy models for Edge Cloud-based loT platforms: Application to data stream analysis in 10T" . Future Generation Computer VU k AMSTERDAM.
Systems, vol. 87, pp. 667-678, Oct. 2018, doi: 10.1016/j.future.2017.12.048.

https://doi.org/10.1016/j.future.2017.12.048

@9 Green Architectural Tactics for the Cloud

tactics: “design decisions that influence the achievement of a quality attribute response”

Example: Apply Edge Compvuting ——--------- A

aggregation
V~4 720p

Real-Time Object Detection . s

S

L) w—

V-5 480p

QoS depends on connectivity '
Edge Benefits: @ v-6 360p

Reduced Latency B

Energy Savings y

¢ g‘ VRIJE
Y. Liet al., “End-to-end energy models for Edge Cloud-based loT platforms: Application to data stream analysis in loT” . Future Generation Computer Systems V U o m‘;ﬁ?&ﬁf

Procaccianti et. al, "Green Architectural Tactics for the Cloud", 2014 IEEE/IFIP Conference on Software Architecture, Sydney, Australia, 2014

5

optimal architecture

’9 Green Arc

Experiment to discover

Ifectura

monitor efficiency

Automatically
per workload

----- Metering

Static
Classification

Dynamic
Classification

LEGEND

Quality

Attribute

Tactic for energy
efficiency

Tactic for resource
efficiency

Publication

. Discovered
by Paradis
etal 51
—> belongsto * - -*

aws

Related to
AWS

relates to

Rebuild software Adopt use-case Use batch instead
cloud-native driven design of real-time data
processing
Red Apply granular
educe %
Overhead pecling
i Compress
e infrequently
______ & accessed data
Resource Resource Increase
Monitoring Adaptation Efficiency e Chose fitting
< o deployment
SN paradigm
Energy Y
Efficiency Service E Optimize search &
Adaptation "\‘ query strategies
Apply edge
computing
Resource

Allocation

| Tactics for the Cloud

Honz?nlal Veanal Scheduling Brokering ----1Reuse software services|
Scaling Scaling
. = aws i : W " Perform specialized tasks
5 Continuously H . “*~4 that occur infrequently in
Ay i evaluate right sizing the cloud

Select nearby
regions with better
renewable energy

Deallocate resources|
that are not used

aws) ["aws
Use reserved s
2 Use spot instances
instances

S. Vos, P. Lago, R. Verdecchia and I. Heitlager, "Architectural Tactics to Optimize Software for Energy Efficiency in the Public Cloud", 2022 International Conference on ICT for

Sustainability (ICT4S), Plovdiv, Bulgaria, 2022

VRIJE
UNIVERSITEIT
AMSTERDAM

A

63‘ QOutline

e Energy Efficiency Across Programming Languages

e Empirical Evaluation of Two Best Practices for Measurement-Based
Energy-Efficient Software Development

e Catalog of Energy Patterns for Mobile Applications Data Mining

r o An Approach Using Performance Models for 3\
Supporting Energy Analysis of Software Systems

e Anindependent assessment and improvement of P Redel@ogd

the Digital Environmental Footprint formulas

\

In this lecture, you will find:

e Tools and approaches for evaluating SW energy consumption
e Well-conducted experiments

é’ Running Average Power Limit (RAPL)

Interface provided by Intel and implemented on modern
Intel/AMD processors

Package 0

System Agent

e PKG: The entire package
o PPO: The cores.
o PP1: An uncore device, usually the GPU (not
available on all processor models.)
e DRAM: main memory (not available on all processor
models.)

Core Core

Core Core

DRAM DIMM 0
DRAM DIMM 1

Last Level Cache
Memory Controller

Integrated
graphics

The following relationship holds: PPO + PP1 <= PKG. DRAM is
independent of the other three domains.

] Package O] Powerplane 0
] powerplane 1[C] DRAM

B Psys

https://firefox-source-docs.mozilla.org/performance/power_profiling_overview.html

ég RAPL support

e Supported by Intel Processors since Intel SandyBridge Architecture (2011)
e Supported by AMD Processors since AMD Family 17h Processors (2017)

e there isn't any RAPL-like event for ARM
o Use Power Monitor (e.g., INA219)
o Estimations

RAPL-based Tools:
e Intel Power Gadget (Windows/Mac)

[define MSR_RAPL_POWER_UNIT

- Platform specific RAPL Domains.
Note that PP1 RAPL Domain 1s s

4

¥

¥ S

* And DRAM RAPL Domain is supported on 062D only
¥/
/¥

orted on @62A only

Powerstat/Powertop/perf (Linux)

Package RAPL Domain */
#define MSR_PKG_RAPL_POWER_LIMIT
SmartWatts (Linux) #define MSR_PKG_ENERGY_STATUS
#define MSR_PKG_PERF_STATUS
#define MSR_PKG_POWER_INFO

e Powermetrics (Mac)

VRIJE
V U UNIVERSITEIT
AMSTERDAM

https://github.com/amd/amd_energy

ég RAPL support

e Supported by Intel Processors since Intel SandyBridge Architecture (2011)
e Supported by AMD Processors since AMD Family 17h Processors (2017)

e there isn't any RAPL-like event for ARM
o Use Power Monitor (e.g., INA219)
o Estimations

RAPL-based Tools: Supported

o Infel Power Gadget (Windows/Mac) [Ny

$ sudo rdmsr 0x606

e Powerstat/Powertop/perf (Linux)
e Powermetrics (Mac) Not Supported

e SmartWatts (Linux) (base) . $ sudo rdmsr 0x606

rdmsr: CPU @ cannot read MSR 0x00000606
(base) -

https://github.com/amd/amd_energy

é? Outline

e Energy Efficiency Across Programming Languages

e Empirical Evaluation of Two Best Practices for Measurement-Based
Energy-Efficient Software Development

e Catalog of Energy Patterns for Mobile Applications

e An Approach Using Performance Models for
Supporting Energy Analysis of Software Systems

e Anindependent assessment and improvement of
the Digital Environmental Footprint formulas

', Energy Efficiency Across Programming Languages

Energy Efficiency across Programming Languages
How Do Energy, Time, and Memory Relate?

Rui Pereira
HASLab/INESC TEC
Universidade do Minho, Portugal
ruipereira@di.uminho.pt

Jacome Cunha
NOVA LINCS, DI, FCT
Univ. Nova de Lisboa, Portugal
jacome@fct.unl.pt

Abstract

This paper presents a study of the runtime, memory usage
and energy consumption of twenty seven well-known soft-
ware languages. We monitor the performance of such lan-
guages using ten different programming problems, expressed
in each of the languages. Our results show interesting find-
ings, such as, slower/faster languages consuming less/more
energy, and how memory usage influences energy consump-
tion, We show how to use our results to provide software
engineers support to decide which language to use when
energy efficiency is a concern.

CCS Concepts « Software and its engineering — Soft-
ware performance; General programming languages;

Keywords Energy Efficiency, Programming Languages, Lan-

guage Benchmarking, Green Software

ACM Reference Format:

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jacome Cunha,
Joio Paulo Fernandes, and Joao Saraiva. 2017. Energy Efficiency
across Programming Languages: How Do Energy, Time, and Mem-
ory Relate?. In Proceedings of 2017 ACM SIGPLAN International
Conference on Software Language Engineering (SLE'17). ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3136014.3136031

1 Introduction

Marco Couto
HASLab/INESC TEC
Universidade do Minho, Portugal
marco.l.couto@inesctec.pt

Joao Paulo Fernandes
Release/LISP, CISUC
Universidade de Coimbra, Portugal
jpf@dei.uc.pt

Francisco Ribeiro, Rui Rua
HASLab/INESC TEC
Universidade do Minho, Portugal
fribeiro@di.uminho.pt
rrua@di.uminho.pt

Joao Saraiva
HASLab/INESC TEC
Universidade do Minho, Portugal
saraiva@di.uminho.pt

productivity - by incorporating advanced features in the lan-
guage design, like for instance powerful modular and type
systems - and at efficiently execute such software - by de-
veloping, for example, aggressive compiler optimizations.
Indeed, most techniques were developed with the main goal
of helping software developers in producing faster programs.
In fact, in the last century performance in software languages
was in almost all cases synonymous of fast execution time
(embedded systems were probably the single exception).

In this century, this reality is quickly changing and soft-
ware energy consumption is becoming a key concern for
computer manufacturers, software language engineers, pro-
grammers, and even regular computer users. Nowadays, it
is usual to see mobile phone users (which are powerful com-
puters) avoiding using CPU intensive applications just to
save battery/energy. While the concern on the computers’
energy efficiency started by the hardware manufacturers, it
quickly became a concern for software developers too [28].
In fact, this is a recent and intensive area of research w
several techniques to analyze and optimize tige
sumption of software systems are being dy

the energy impact of different programming p
mobile [18, 22, 31] and desktop applicatiop

Energy

(c) C

(c) Rust

(c) C++

(c) Ada

(v) Java

(c) Pascal
(c) Chapel
(v) Lisp

(c) Ocaml
(c) Fortran
(c) Swift
(c) Haskell
(v) C#

(c) Go

(i) Dart

(v) F#

1.00
1.03
1.34
1,70
1.98
2.14
2.18
227
2.40
2.52
2.79
3.10
3.14
3.23
3.83
4.13

(v) F#

(i) JavaScript

(v) Racket

(i) TypeScript

(i) Hack
(i) PHP

(v) Erlang
(i) Lua

(i) Jruby
(i) Ruby
(i) Python
(i) Perl

4.13
4.45
791
21.50
24.02
29.30
42.23
45.98
46.54
69.91
75.88
79.58

VRIJE
UNIVERSITEIT
AMSTERDAM

é‘
Motivation:

Provide software engineers support to decide which language to use when
energy efficiency is a concern

Energy Efficiency Across Programming Languages

D

Method:
Profile 10 well-known problems implemented in 27 programming languages

Research Questions:
RQ1 Can we compare energy efficiency of SW languages?
RQ2 Is the faster language always the most energy efficient?
RQ3 How does memory usage relates to energy consumption?
RQ4 Can we automatically decide the best SW language

considering execution time, energy consumption, memory?

é’ Computer Language Benchmarks Game (CLBG)

CLBG is a framework for running, testing and

comparing programming languages

Born in 00s for comparing scripting languages.
Nowadays, it includes 13 problems implemented in

28 programming languages

fannkuch-redux

source Secs

C++g++#6 3.23
Rust #6 3.51
C++ g++ #7 14.04

Rust #4 7.21

mem

10,936
11,036
10,912

10,932

gz
1528

1253
1150
1020

Cpu secs

12.80
1398
14.04

28.34

Benchmark

Description

Double precision N-body

noady simulation

fannkuch- Indexed access to tiny integer

redux sequence

spectral- Eigenvalue using the power

norm method

mandelbrot Generate Mandelbrot set
portable bitmap file

pidigits Streaming arbitrary precision

arithmetic

regex-redux

Match DNA 8mers and
substitute magic patterns

fasta

Generate and write random
DNA sequences

k-nucleotide

Hashtable update and
k-nucleotide strings

reverse-
complement

Read DNA sequences, write
their reverse-complement

binary-trees

Allocate, traverse and
deallocate many binary trees

chameneos- Symmetrical thread rendezvous
redux requests

meteor- Search for solutions to shape
contest packing puzzle

thread-ring

Switch from thread to thread
passing one token

VRIJE
V U UNIVERSITEIT
AMSTERDAM

Computer Language Benchmarks Game (CLBG), https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html, Accessed 09-09-2023

14

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

ég Experiment Design and Execution

e Most efficient version (i.e. fastest) 0 i - 5. 5 < v ieeyg

version of the source code time_before = getTime(...);
//performs initial energy measurement
e Replicated the information of the PAPLUETErE sz 0l b
C:LB(; //executes the program

system(command);

e Functional Correctness Verification

//computes the difference between
//this measurement and the initial one

e Each benchmark has been rapl_after(...):
executed 10 times time_elapsed = getTime(...) - time_before;
e Peak Memory Usage measured } .

with USing /usr/bin/time -v command
Figure: Measurement Framework

VRIJE
V U UNIVERSITEIT
AMSTERDAM

15

é, RQ2: Is Faster, Greener?

No, a faster language is not always the most
energy efficient

o Energy (J) = Power (W) x Time (s)

Fastest and most Energy Efficient
Languages:

e Compiled
e Imperative

87-88% of the energy consumption
derived from the CPU and the remaining
to the DRAM

fasta

Energy Time |Ratio | Mb
(c) Rust [Jo 26.15 931 0.028 | | 16
(c) Fortran | | 27.62 1661 0.017 1
©oCcnh 27.64 973 |0.028 | 3
©C++T1 U2 34.88 1164 |0.030 | 4
(v)Java Ty U1z 35.86 1249 10.029 | 41
(c) Swift |Jo 37.06 1405 10.026 | 31
(©) Go |2 40.45 1838 |0.022 | 4
(c) Ada | M3 40.45 2765 |0.015 | 3
(¢) Ocaml |, |5 40.78 3171 0.013 | 201
(c) Chapel Ts 10 40.88 1379 10.030 | 53
™) C# T4 s 45.35 1549 10.029 | 35
(i) Dart |J¢ 63.61 4787 10.013 | 49
(i) JavaScript |}, 64.84 5098 |0.013 | 30
(c) Pascal | 13 68.63 5478 |0.013 0
(i) TypeScript |2 10 82.72 6909 |0.012 | 271
W F# To M3 93.11 5360 |0.017 | 27
(v) Racket | s 12090 8255 |0.015 | 21
(c) Haskell T, g 205.52 5728 |0.036 | 446
(v) Lisp 2 23149 15763 |0.015 | 75
(i) Hack |J3 237.70 17203 |0.014 | 120
(i) Lua f1s 34737 24617 |0.014 3
@ PHP |y T3 43073 29508 |0.015 | 14
(v) Erlang T; f12 477.81 27852 |0.017 | 18
(i) Ruby | M2 85230 61216 |0.014 | 104
(i) JRuby Ty |» 912.93 49509 |0.018 | 705
(i) Python |; fl1s 1,061.41 74111 |0.014 9
(i) Perl Ty s 2,684.33 61463 |0.044 | 53

Energy Efficiency Across Programming Languages, https://sites.google.com/view/energy-efficiency-languages, Accessed 09-09-2023

16

https://sites.google.com/view/energy-efficiency-languages

&9 RQ3: Memory Impact on Energy

Peak memory usage: how memory is
saved at a given point of the execution

fannkuch-redux
Compiled

40 60

Best Languages: = A

30

. 25 // \
e Imperative /

20 { \
. 2 / \
s Tomeled AEEERY | | lH :
¥ 5 10
5 - Ny o 5
< & S

No correlation between DRAM energy v T TS
consumption and peak memory usage I —

oules

ToDo: correlation between energy
consumption and confinuous memory usage

VRIJE
UNIVERSITEIT
AMSTERDAM

17

é’ RQ4: Energy vs Time vs Memory

Time & Memory Energy & Time Energy & Memory Energy & Time & Memory
C « Pascal « Go & C « Pascal C « Pascal « Go
Rust « C++ « Fortran Rust Rust « C++ « Fortran « Go Rust « C++ « Fortran
Ada C++ Ada Ada
Java « Chapel « Lisp « Ocaml Ada Java « Chapel « Lisp Java « Chapel « Lisp « Ocaml
Haskell « C# Java OCaml « Swift « Haskell Swift « Haskell « C#
Swift « PHP Pascal » Chapel C# « PHP Dart « F# « Racket « Hack « PHP
F# « Racket « Hack « Python Lisp « Ocaml « Go Dart « F# « Racket « Hack « Python JavaScript « Ruby « Python
JavaScript « Ruby Fortran « Haskell « C# JavaScript « Ruby TypeScript « Erlang
Dart « TypeScript « Erlang Swift TypeScript Lua « JRuby « Perl
JRuby « Perl Dart « F# Erlang « Lua « Perl
Lua JavaScript JRuby
Racket
TypeScript « Hack
PHP
Erlang
Lua « JRuby
Ruby

VRIJE
UNIVERSITEIT
AMSTERDAM

18

A
&9 Summary

Compiled and Imperative
programming language
perform better and more
energy/memory efficient

It is not possible to find a
programming language that
improves all three attributes

CPU seems consuming most
of the energy consumption

An evaluation of memory
usage over time is missing

Energy
(© C 1.00
(c) Rust 1.03
(c) C++ 1.34
(c) Ada 1.70
(v) Java 1.98
(c) Pascal 2.14
(c) Chapel 2.18
(v) Lisp 227
(c) Ocaml 2.40
(c) Fortran 252
(c) Swift 2.79
(c) Haskell 3.10
(v) C# 3.14
(c) Go 3.25
(i) Dart 3.83
(v) F# 4.13

(v) F#

(i) JavaScript
(v) Racket

(i) TypeScript
(i) Hack

(i PHP

(v) Erlang

4.13
4.45
791
21.50
24.02
29.30
42.23
45.98
46.54
69.91
75.88
1938

A Empirical Evaluation of Two Best Practices for Energy-Efficient
Software Development

R - ° 2
°
° L ,,°
Contents lists available at ScienceDirect -
° e -
°
The Journal of Systems and Software * B s
journal homepage: www.elsevier.com/locate/jss °
£ 1 ¢
°
o
e, " o . S °
Empirical evaluation of two best practices for energy-efficient b . o
software development ° * e o 3 e
° oo e ¢ ©°
i P 2 2 ;. - o,
Giuseppe Procaccianti*, Héctor Ferndndez, Patricia Lago g b 2,2 °° = °® H
VU University Amsterdam, De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands 2 & 1 © * 0@ ® o i~
(=] o =]
ARTICLE INFO ABSTRACT
Anidf history: Background. Energy efficiency is an increasingly important property of software. A lar;
';“F’V;dléz DJ:(‘Y 2::52015 pirical studies have been conducted on the topic. However, current state-of-the-Art
evise ember icaftavali el N fFici 2l
Accepted 23 February 2016 empirically-validated for 2y ient software. o
Available online 4 March 2016 Aim. This study aims at assessing the impact, in terms of energy savings, of best pract] o
software energy efficiency, elicited from previous work. By doing so, it identifies wh -
Keywords: affected by the practices and the possible trade-offs with energy consumption.
Software engineering
Best practices Method. We performed an empirical experiment in a controlled environment, wher
Energy efficiency different Green Software practices to two software applications, namely query optim|
Server and usage of “sleep” instruction in the Apache web server. We then performed ° .
the energy consumption at system-level and at resource-level, before and after applyin; ° *» e, PP
Results. Our results show that both practices are effective in improving software ene 2 > %g *
ducing consumption up to 25%. We observe that after applying the practices, resour ® - > & °. ° 0s @
energy-proportional i.e., increasing CPU usage increases energy consumption in an alme w - o “so o
- M i) = s - O -4 O - & < < e ¢ o8 < e
also provide our reflections on empirical experimentation in software energy efficiency,
Conclusions. Our contribution shows that significant improvements in software energy| T T T T Y T T T T
gained by applying best practices during design and development. Future work will be 294 ”, 200 « - - P 2%
validate best practices, and to improve their reusability. 180 200 e 240 e 1%0 200 210 e 2%
© 2016 Elsevier Inc. A Watts Watts
1. Introduction To understand how software can impact on energy consump-
tion, consider the following example': after launch, thep
The energy impact of software has been recognized as signif- lar Youtube video of the “Gangnam Style” song reag
icant with respect to the overall energy consumption of its exe- amount of visualizations during the first year after i
cution environment (Capra et al., 2012b; Procaccianti et al., 2012). roughly 1.7 billion. The amount of energy used by Google to
Many researchers have been working on sophisticated software fer 1 MB across the Internet (as reported by the cq VRIJE
power models (Sinha and Chandrakasan, 2000; Kansal and Zhao, website?) is 0.01 kWh (a rough average), and djsplay” UNIVERSITEIT
2008) able to estimate and predict the energy consumption of soft- 0.002 kWh (depending on the destination device). AMGIERDAM
ware applications through different parameters. In spite of this ef- ergy needed to stream and display the “Gangnap

ég Empirical Evaluation of Two Best Practices for Energy-Efficient
Software Development

Motivation:
Current SOA does not provide empirical evidence of tactics for green
software

Method:
Conftrolled Experiment in which two practices were empirically evaluated

Research Questions
RQ1: Whatis the impact of each practice in terms of energy
consumption?

RQ2: Is the relationship between resources and power consumption
affected by the application of each practice?

éa Experiment Design

Two Practices: (1) Put application to sleep and (2) Use Efficient Query

Quasi-Experiment:
Practices manually applied to two open-source SW applications:
Apache Web Server for (1) and MySQL Database Server for (2)

Dependent Variables:
1. Energy Consumption at System-Level
2. Energy Values of Each Resource (CPU, Disk, Network, Memory)

Independent Variables:
e Fixed Workload
e Absence/Application of a Green SW Practice (2 Treatments)
e Fixed Test machine (HW/SW)

é’ Experiment Execution

10 executions for each practice

Test Machine Monitor Machine
Resource usage
data (.csv)
NFS s
Shared Logs |«
Folder P,
Software Posv
pr—— execution
Test measures CcSV
Application Logger
A
Energy Consumption Energy Consumption Energy Data
(system-level) v v (component-level)
Wattsup DAQ Energy Samples »| Intel Energy
PRO Server (ESRV)
Energy Logs (.csv)
Figure: Experiment Setting VU k EE'J;:;S;;;E;

23

éi} Experiment Execution

SELECT SQLNO.CACHE a.old_id

Practice 1: Use Efficient Queries: FROM text a, revision b

. . WHERE a.old_id = b.rev_text_id
e Database populated with the English oppER BY a4 01d id -

Version of Wikipedia (30GB)

. Figure: Query before applying the practice
e Query searching for text fragments

SELECT SQLNO_CACHE a.old_id
FROM text a, revision b
Practice 2: Put Application to Sleep WHERE 2. 0ld id = b.rev_text_id

sleep() while waiting for a HTTP Request Figure: Query after applying the practice
e Workload made of 5§ million requests

with max 50 concurrent requests and @

time limit of 5 min (ab utility)

é;’ Efficient Query - Results

RQ1: Whatis the impact of each practice in terms of energy
consumption?

- Low decrease in Power Consumption due to performance
optimization

RQ2: Is the relationship between resources and power consumption
affected by the application of each practice?

- Direct Correlation between CPU and Disk Consumption

- After applying the practice, the correlation I/O operations and
Energy have negative correlation (CPU Inactive)

éa Put Application to Sleep - Results

RQ1: Whatis the impact of each practice in terms of energy
consumption?

- Almost no difference between Power and Energy Consumption
Improvement (correlation between performance and energy)

RQ2: Is the relationship between resources and power consumption
affected by the application of each practice?

- Confirmed Energy-Proportional Behavior

- CPU not the main driver of energy consumption since Memory
has the same consumption

éa Summary

e The paper confirms the

importance of Green Software N 2
Tactics "
o Significant Energy Reduction 2
(25%) PR
coo et
o Impact on Resource ' RS Dt
Consumption) ")

e Energy Consumption should be
considered a first-class design
concern

T
180 200 220 280 280 190 200 210 220 23

Watts Watts

Figure: CPU utilization and CPU Energy Consumption before and after
applying Practice 1

VRIJE
V U UNIVERSITEIT
AMSTERDAM

27

éi} Outline

e Energy Efficiency Across Programming Languages

e Empirical Evaluation of Two Best Practices for
Energy-Efficient Software Development

e Catalog of Energy Patterns for Mobile Applications Data Mining

e An Approach Using Performance Models for
Supporting Energy Analysis of Software Systems

e Anindependent assessment and improvement of
the Digital Environmental Footprint formulas

69 Catalog of Energy Patterns for Mobile Applications

@ Android

Home > Empirical Software Engineering > Article
I iOS

0.03 -

Published: 05 March 2019
Catalog of energy patterns for mobile applications .. 0-02-

Luis Cruz & & Rui Abreu

Empirical Software Engineering 24,2209-2235 (2019) ‘ Cite this article 0.01 -

1656 Accesses | 51 Citations | 8 Altmetric | Metrics

0.00
— & o .
o ERE I3 388882228 LEELE ETE
stracC 9 < ° "g 8 A o é)] .3 S 8 g 2 qu.; 8 8 8 2 =2 a
SAE3¢8528 7,583 w022E 82 E
Software engineers make use of design patterns for reasons that range from performance to 5 E’ 29 3 3 % ‘; 3 2 §) § % £ 2 5 g g 2 A
syeds : 3 Qo & Z o O o = 0 k=] o g
code comprehensibility. Several design patterns capturing the body of knowledge of best X o g 2= "§ 2 f ~ :o> § 2 g % ‘E‘ g g S = =) o
g o @ 3 o 9 3 = %) o &
practices have been proposed in the past, namely creational, structural and behavioral A E & '§ £ g % iy @] A § § ﬁ AL E
o @ o~ ey m — O :
patterns. However, with the advent of mobile devices, it becomes a necessity a catalog of g o ~:’ B = M g o go
A g X ©
design patterns for energy efficiency. In this work, we inspect commits, issues and pull é 2 Z 4 2
g
requests of 1027 Android and 756 iOS apps to identify common practices when improving 2 ° =
2 <

energy efficiency. This analysis yielded a catalog, available online, with 22 design patterns Energy Pattern

related to improving the energy efficiency of mobile apps. We argue that this catalog might be
of relevance to other domains such as Cyber-Physical Systems and Internet of Things. As a
side contribution, an analysis of the differences between Android and iOS devices shows that

the Android community is more energy-aware.

VRIJE
UNIVERSITEIT
A% AWSTERDAM

29

7
65} Catalog of Energy Patterns for Mobile Applications

Motivation:
The adoption of design patterns is widespread across soffware developers, e.g., to
avoid performance bottlenecks and increase comprehensibility

Method:
Mining software repositories: inspect commits, issues and pull requests on
GitHub

Research Questions
RQ1: Which design patterns do mobile app developers adopt to improve
energy efficiency?

RQ2: How different are mobile app practices addressing energy efficiency
across different platforms?

A : : :

6@ Catalog of Energy Patterns for Mobile Applications
Design Pattern: Each pattern describes a recurrent design problem, its solution and the
consequences of applying it

1027 Android apps (F-Droid) and 756 iOS apps (Collaborative List of Open-Source iOS
Apps)

& I

2. Collect Commits, Pull
Requests and Issues

3. Manual refinement of
subjects of interest
‘ .*(energy|battery|power) . * ‘ |

v

g Catalog of Energy Patterns patterns

1. App Dataset

Collection 4. Thematic analysis

VRIJE
Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995), Design patterns: elements of reusable object-oriented software, Pearson Deutschland VU k UNIVERSITEIT

AMSTERDAM

31

yorem o1ddy
Jojenuy
Al o1ddy
uoneonpy
BEYVRLEYYY
Aanonpoad
Aumoag
purddoys
[BIOJO
SMaN
BIPON
uo1ed0]
pieoqAe)]
UiesH
awren
90URUI]
Jadoreaa(g
UuoISualxy
[e1oos

OSITIN
UOT}ROTUNWWO)
I9smoig

uno)

QwILy,

Bunm

SINS X suoyqd
Purway,
Juewdo[eaag
Ajumoag

UifeeH » siods
sotydern
uoreONpPH X 90USIOS
A1arpoauu0)
uonjehiaeN
JouIalu]
RIPAWININ
Aauon

Burpeay

sawreo)

wolsAg

69 Dataset Collection

Figure: iOS Application Categories

Figure: Android Applications Categories

VRIJE

UNIVERSITEIT
AMSTERDAM

VUf

https://f-droid.ora/

1.

https://github.com/dkhamsing/open-source-ios-apps

2.

32

https://f-droid.org/
https://github.com/dkhamsing/open-source-ios-apps

A

&

D

Dark Ul Colors

Context:

Apps that require heavy usage of screen
(e.g., reading apps) can have

a substantial negative impact on battery life

Solution: ZAQ) NCADVG
Provide a Ul with dark background colors LOP\EM

(CSUM

LA NR ‘

Example:
Provide a theme with a dark background
using light colors to display text.

éa Dynamic Retry Delay

Context:

A resource is unavailable, the app will
unnecessarily try to connect the resource for
a number of fimes, leading to unnecessary
power consumption.

Solution:
Increase retry interval after each failed
connection

Example:

Instead of continuously polling the

server until the server is available, use the
Fibonacci series to increase the

time between attempts

és Batch Operations

Context:

Executing operations separately leads to TAsK | Task2 Ta6K3

extraneous tail energy consumptions /\/\/_
L - >

Solution:

Bundle multiple operations in a single one. By

combining multiple tasks, tail energy CoMBINED

consumptions can be optimized TASKS

Example: — [M\

Use Job Scheduling APIs (e.g., ' —>

‘android.app.job.JobScheduler’, ‘Firebase
JobDispatcher’) that manage multiple
background tasks occurring in a

device.

é;’ Cache

Context:
Same data is being collected from the
server multiple times

Solution:

Implement caching mechanisms to
temporarily store data from a
server

Example:

Instead of downloading basic information
and profile pictures every time a given
profile is opened, the app can use data that
was locally stored from earlier

visits

@ Android
@l ioS -

UNIVERSITEIT
AMSTERDAM

VRIJE

AT

m

VU

puewa(UQ - JUAS [enuUBRN
‘wiuy 3 ydero ‘e1jxyg proay
UOT10RISIUL USIIS ON

sy[se], [euiouqy oy

uoisn, I0suag

uormjosal ybnouyg

SI9S[) WLIOJU]

1S9g SMOWY JI8S)

ajey 9sealda(]
ayoe)

suonjerad(yolyeg
sboT ssaaddng
IeIn[e) I9A0 HIM
971G 20Npay

SSQUaIeMY JOMOJ

69 Energy Patterns Frequency

9POJN 9ABS I9MO(
[[0d I9AQ Usnd

AressadaN uayp A[uQ uadp
9[p1-0}-80ey

SJIOA\ SNOdURIIXH PIOAY
Aera Aoy otwreuiq

s10[0D) 1N YIeq

0.02 -

0.01 -

0.00 —

Energy Pattern

37

ég Insights

e Patterns found in 133 Android apps (13%) and 28 iOS apps (4%)

o Reasons not deeply discussed in the study (App Store constraints)

e Characteristics of the applications can have influenced the results
o Sample unbalanced
o Technology (e.g., AMOLED Screen)
o APIs Features (e.g., Batch Operations in Android)

e Thereis no empirical study that has evaluated the cost and benefit of
applying these patterns

é@ Outline

e Energy Efficiency Across Programming Languages

e Empirical Evaluation of Two Best Practices for
Energy-Efficient Software Development

e Catalog of Energy Patterns for Mobile Applications

r o An Approach Using Performance Models for 3\
Supporting Energy Analysis of Software Systems

e Anindependent assessment and improvement of r Rpdel"bgle

the Digital Environmental Footprint formulas

69 Reducing the Reality Gap

Explore the combination of measurement-based experiments and modeling in the
context of energy/performance analysis of software systems

Data

®—> —>
Model

ey W Modeling

Parametrized

Model
Does the model yields accurate

estimates?

Is it possible to raise the level of
abstraction?

Validation

é’ Power Profile

! Power Profile !
' of o Run
PowerW) | '~ TTToC

! 1. Behavior(Model) ~ Behavior(System)

2. Behavior — PowerProfile

3. PowerProfile(System) ~ PowerProfile(Model)

*_ A
S

|
1
|
I
|
|
|
|
I
|
I
|
|
I
|
I
|
|
|
X

TwmelS)

é’ Queuing Networks

PowerW)

i
! Power Profile !
Y. /
I of & Run ! ,';//
___________ J !@% P w; 7
A 1, %57
L/ /'/,‘ "" 2
1, RV
74 '//‘; "" 7,
27/ 1 ,'//‘ O'/ /)
% %))
J . I ",’// 7
A A
Q& '%’ .
K 999
74 2,/
. YA AT
/, \'///' 0/," /A
[. \TL
0% 275 K25/
K / '/5””‘ l:"l 4
K3 % %, %57
Va9, L% ;'//'// / % "/f//lz /;'i‘ //
5K [Y s R
L
A4
N

/,'

N SN

PN

NN

s(ePU)

X

S(Disk)

Observation

VU ir
T‘ M e AMSTERDAM

42

A
&3 Res
3 ources Average Power Consumption

|
1 -I
) Power Profile !
[} |
O'P A
POWQ{‘(W) s R_ u_n _|| "// :
o ’;,/"/'Il‘ D ";'/ ' E Sres
v A . (res, i)
= AN 2 S —
RN IR: 5 o, ! P(t) dt Joule,
A v A 1% ,’? | 3 .'—.] ()
’ XK IW'T%%M £0,i i
R A A ¥ 181¢
ok ki A
K% % % A
& % R 557 %5 x
K& o R A A
4, Yo 4, w4, 9 078, Al
(50 T4 0% K, 850 |
2 %7 7 5 %
1., % 24 2, 52 K, /
w0, 2Ly DL A
74 2K, 4 £/
Vool R R 5 G
L //'//// 2.7 3 72
e 74 r, // 54 |
oI5 ¢ Ll 7 YRA
X ’\/ W | I
N N e

Time(S)

x Observation
Time

%%Z%Z CPU-Time

Disk-Time
VU ir

43

é’ Resources Average Power Consumption

X
1 of o Run _‘| -~ ' ;;//
___________ V// /) /’ N 7
Power{W) A 1 %%

 // /'/;"4 ; /'I"
7 QY FaV, &=/

&, ! 7 1%
; 4877 Ll 57,
K 'A¥7/ XL N

LS KR %/
D5 %' (0 /'//', 5% % Y
4 YW R b) /4

% '%%7/’ ,|%@¢ |4@
K %4, %%, 5%
% 55, R, 4

%, X9,/ \AF Y
2% 0 R o
[724, 47, G
% X049 B, &%
b5, Sy k) %
%%, P20 K
%.%,%,4 P4 BT - \RP

(L %Y e / 2
GR35 B # 0 B8
\a '

ST‘ES

E(res,i) = /
t0,i

#Visit ey
/tO,i

ED(res) = Z

Joule
Vst

P(t) di|] (1)

P(t) dt[Joule] (2)

N SNNN

NNANNANNNN

NN

x

A
A

W CPU-Tme

N\

TimelS)

Observation
Tme

VRIJE
UNIVERSITEIT
AMSTERDAM

Disk-Tme)< VU k

44

PowerW)

/////// CPU-Time

r I
I Power Profile]

| i

1 of a Run H - , ;’,// '
Esfe e YA |
A Y %% '
27T AA Y, &5\ g
£ 0y, § /% /'//;‘ 0"/ 7/, '7;'7' '
%) 2/ %A .Y 4,4 l
X %% 0% ! 1) l/ B %, 0/4/A

% %, /¥ KA 2, 2,
; 9.4, R A A A
X% 1A %% R, A
% , 2.2, Y% Y I
b8 B9 M7 5 58
'I/ //'////// D4 é”l / /% 2
%% % RN/ YK/ %, 8% |
% 2y &) %7 %57
["'[% /O/ % ///0}* %)]/' !
6555, B9 %) % %)

E(res)

I‘Il
X—X—X—X—X—

é’ Resources Average Power Consumption

Sres oule
E(res,i) :/t P(t) dt[u] (1)

0.i Visat

#Visit

%

S e s
ED(res) = Z /tO P(t)dt[Joule] (2)

_ ED(res) [Joule]
- #Visit " Visit (3)

Observation

V U k n:IIJVEERSrI'ElT
AMSTERDAM
Tme

é’ Resources Average Power Consumption

! Power Profile ! Sres Joule
" X .
 faRwm 1o T . E(res,i) = P(t) dt[——] (1)
——————————— 2 P .
Power{w) v WA ! £0. Visit
A . .’,/', /'I |
L/ VA oY, AN 2% |
% QY 45 %, A P
o/ 7s, ’ 7/ &7
kA A A A ED(res)= Y P(t) dt[Joule] (2)
[7 WAL X I/// L, ”
%)), % % %5 %5 i=1 02
KD ///z)/,.', %% 4 0 %2, 7|
B2 R A A A B ED(res) Joule (3)
%% 0, 2, K s /) (res) = []
5 %y & % %% HVisit ' Visit
[/ % 4.9 2,4 74 ¢ /
£2 % B vy T ACEt PR .
/ 2 , 8%
G // A A A A E(res) Joule 4
4 RN R 0 | 1 o 1
X | e(res) = [[
| S(res) s :

x Observation

VU b
AMSTERDAM
Twme

46

/////// CPU-Time

é’ Resources Average Power Consumption

r----=-=------ I
I Power Profile !

' i %y s(ePU)
'| of o Run _|| - ' ;;// | o
---------- A VT y | e
Power(w) A0 |
74 "l//"« ' AN 2 ' A
7 A7 ',':0,2 | 7 ,r,,/i/, 7 —
% A7 K WX WL
AP/ A Y, Y, 7
% ¥, TR R A
7 BT KR/, % 6|
e B Bk %% %57
K R, % L, G
% %4/ 2, IS/ KK S(Disk)
% 04 % 4 P47/, 087 s
0 %4, \Rp 0 ‘K ;
X RN/ YR 2, % /
2% LK 2, Y, 7 P50 y
%.,%,% Y, L5 4 b0 A
2,9,2; PP MR X _K
%0, K BTK . s A
L8 92, //// 5 N
B55%)) B9 5 B R
|
| A

P
y
A<
X

x Observation
Tme

W CPU-Tme

VRIJE
UNIVERSITEIT
AMSTERDAM

47

é, Resources Average Power Consumption

Two Case Studies:

@ Digital Camera [3] Train Ticket Booking System [4]

For each case:

1. Observe the system under scaled workloads

2. Create a Layered Queuing Network (LQN) parametrized with measures obtained in
the shortest experiment

3. Compare estimates vs measurements

Our approach, at the moment, considers only the cases in which energy
consumption grows linearly with execution time

VRIJE

F. Vahid and T. Givargis, Embedded System Design: A Unified Hardware/Software Introduction, John Wiley & Sons, Inc., USA, 1st edition, 2001 VUkumvmmn
Fudan Software Engineering Laboratory, Train Ticket Booking System, https://github.com/FudanSElLab/train-ticket, accessed: 2023-04-12 Areteioan

48

https://github.com/FudanSELab/train-ticket

é’ Digital Camera e

Host PC
1. Orchestrates the

A total of thirty batches are experiment

2. Gets data from the

provided to the application, i.e.,] Monsoon L
8K /\<\
] O per fOI’mC]T, Monsoon Power Monitor

monitors the energy consumed

) by the camera
4K) (
A batch contains 30 pictures of AN VRS /

the same format chosen 2K v
between 2K, 4K, and 8K

o

BeagleBoard Black

Processor. AM335x 1GHz ARM® Cortex-A8
)) OS: Linux Debian k R
[5] Monsoon Solutions Inc, Monsoon Power Monitor, httgs:“www.msoon.c%M: 512MB DDR3 VU AR

Disk: 4GB Flash 49

https://www.msoon.com/

é? Digital Camera

Format Response Time (s) CPU Utilization (%)
2K 60.30 - 60.30 96.30 - 96.48
4K 240.36 - 240.30 96.76 - 96.12
8K 960.73 - 960.60 97.39 - 96.06

Cells presenting two values have measured value, on the left

e(res) = g((:z.:)) [Jo:,le] ﬁ> E(res) =

e (J/s) Average Energy (J)

1.57 95.27 - 95.16
1.59 382.46 - 379.24
1.59 1537.96 - 15616.04

, and estimate, on the right

e(res) x S(res)|Joule]

' A k . . .
5@ Train Ticket Booking System

M2 Workload TTBS

Executes TTBS

M1

Generates Bursts of 75, 150,
225, 300, 375, 450, 500
Customers using JMeter

HW

Records Performance and
Power Consumption
Values

Wattsup Power Meter

M1 M2

Power Meter Store, Watts Up Power Meter, https://www.powermeterstore.com/p1206/watts_up_pro.php

https://www.powermeterstore.com/p1206/watts_up_pro.php

é@ Train Ticket Booking System

2500 +

2000 +

1500 -

Energy (Joule)

1000 A

500 A

—8— measured
estimated

- -

300 400 500

Size (# Customers)

100 200

Energy Consumption

CPU Utilization (%)

B B
o [S,]

w
(8]
1

Mean Absolute Percentage Error: (i) 9.24% CPU UMil. (i) 8.47% Energy Consumption
Experimentation Time: from 5 hours to 35 minutes

(o))
o
1

6]
[($,]
1

u
(=)
1

—8— measured
estimated

100

200

300
Size (# Customers)

Performance

400

500

\[]’4

VRIJE
UNIVERSITEIT
AMSTERDAM

52

€9

Limitations

Data sampled during the shortest
experiment can be not
representative of the SW

The set of data points evaluated in
both case studies is too small

Future Work

Examine the performance and
energy consumpftion of resources
other than the CPU, such as the disk
and network

Consider different modeling
notations that could be more
suitable in specific application
domains

Consider cases in which CPU
frequency and voltage are
dynamically adjusted (DVFS)

éi} Assessment and Improvement of DEF formulas

If direct measurements are impossible (Cloud), closed-form energy models can help quick
decision making and rough estimations

Sustainable Digital Infrastructure Alliance (SDIA):

Digital Environmental Footprint (DEF) set of formulas for energy consumption estimation of
software services

Etot — Ecpu + Emem + EIO + Enet i Bidle

Etot — Ucpufcpu(Ucpu> + Umemfmem(Umem)+
UIOfIO<UIO) I Unetfnet(Unet> +- 5idle

Tom Kennes, Measuring IT Carbon Footprint: What is the Current Status Actually? https://arxiv.org/abs/2366.10049

https://arxiv.org/abs/2306.10049

éa Energy Model

A1l: We can use the Thermal Design Power (TDP) to indicate the energy consumption of
a server when full load is applied to the CPU

A2: YCPU + Omem + Q1O + Qpet = 1

A3: The energy consumed by a server increases linearly relative to the increase in usage
of any of its components

A4: |dling consumption of resources is expected to be zero

EcpU max = UcPU max * fcru(UcPU max) = Ncpu * TDP

Etot predict = CPU.yorkload% * [Ncpu * TDP]/acpu

éé Experiment Setup

Computer /
Server

Energy
‘monitorin

Stress-type‘

Legend

itor energy

aaaaaa

|
|

ress system

APl calls

Stress-ng:
stressor

v
TTS:
(k6)

Verify the accuracy of the DEF formulas

The results were validated using two different
workloads (1 synthetic and 1 realistic)

o Synthetic = stress-ng

o Realistic = Train-Ticket Booking System + ké
Independent Variable: %CPU

o Treatments: Idle, 50%, 75%, 100%
Dependent Variable: Energy Consumption
10 Run per Treatment of 15 Minutes

5 minutes cooling time between measurements

é’ Results

DEF1.0 E: predict — CPUyorkload% * [Ncpu * TDP]/acpy
SUT3: Energy TTS and DEF1.0

Qepy fixed 10 {0.6, 0.65. 0.7} s
. . s o8-
e Linearity between energy & 150000 @S = oeiA
consumption and CPU Load i P
RINTISAS

e Energy Consumption Average Error
Rate (%): 14.04 - 17.74%

50000

0

0 10 20 30 40 50 60 70 80 90 100
e MAX Avg Error Rate (%): 13.96% - 32% CPU load (%)
~—&—Predicted 0.6 Predicted 0.65 —+— Predicted 0.7
® EnergyTTS Linear (Energy TTS)

VRIJE
UNIVERSITEIT
AMSTERDAM

57

é, Refinement
DEF 1.0

Etot predict = CPU.yorkload% * [Ncpu * TDP]/acpu

DEF 2.0 DEF 2.1

Pidlecpy = Ridle = Pcpu = 0.28 « Nopy * TDP Pidlepax = (0.28 * TDP * Ncpu)/acpy

Ptot = (Pmax — Pidlecpy) * %CPU + Pidlecpy

Etor = Pror * t

é, Results

DEF 2.X Ptot = (Pmax — Pidlecpy) * %CPU + Pidlecpy

Etor = Pror * t

Linearity between energy
consumption and CPU Load

Energy Consumption Average Error
Rate (%):

o DEF2.0: 12.36 - 13.96%
o DEF2.1:11.08-15.42%
Best Resulfs with a_,,, fixed o {0.6, 0.65}

SUT3: Energy TTS and DEF2.1

250000
200000

& o0
150000 oN

Energy (J)

100000

50000

0 10 20 30 40 50 60 70 80 90 100
CPU load (%)

Predicted 0.65 ¢ Energy TTS

Linear (Energy TTS)

Thanks!
Any Questions?

email: v.stoico@vu.nl

IMG: Keith Haring, Untitled (Earth Day), 1985, https://emergencyartmuseum .com/haring

https://emergencyartmuseum.com/haring

